-
Topics
Subnavigation
Topics
Electromagnetic fields
- What are electromagnetic fields?
- High-frequency fields
- Radiation protection in mobile communication
- Static and low-frequency fields
- Radiation protection relating to the expansion of the national grid
- Radiation protection in electromobility
- The Competence Centre for Electromagnetic Fields
Optical radiation
- What is optical radiation?
- UV radiation
- Visible light
- Infrared radiation
- Application in medicine and wellness
- Application in daily life and technology
Ionising radiation
- What is ionising radiation?
- Radioactivity in the environment
- Applications in medicine
- Applications in daily life and in technology
- Radioactive radiation sources in Germany
- Register high-level radioactive radiation sources
- Type approval procedure
- Items claiming to provide beneficial effects of radiation
- Cabin luggage security checks
- Radioactive materials in watches
- Ionisation smoke detectors (ISM)
- Radiation effects
- What are the effects of radiation?
- Effects of selected radioactive materials
- Consequences of a radiation accident
- Cancer and leukaemia
- Hereditary radiation damage
- Individual radiosensitivity
- Epidemiology of radiation-induced diseases
- Ionising radiation: positive effects?
- Radiation protection
- Nuclear accident management
- Service offers
-
The BfS
Subnavigation
The BfS
- Working at the BfS
- About us
- Science and research
- Laws and regulations
- Radiation Protection Act
- Ordinance on Protection against the Harmful Effects of Ionising Radiation
- Ordinance on Protection against the Harmful Effects of Non-ionising Radiation in Human Applications (NiSV)
- Frequently applied legal provisions
- Dose coefficients to calculate radiation exposure
- Links
Medical application of radiation during pregnancy
Source: sp4764/Stock.adobe.com
If a pregnant woman is exposed to radiation, then malformations and developmental disorders may occur in the unborn child. In addition, the child has an increased risk of developing cancer or leukaemia. For this reason, there are appropriate provisions for protecting the unborn child in the German Radiation Protection Ordinance. Accordingly, before applying ionising radiation in medical diagnostics or therapy, the examining physician has to ask every woman of reproductive age whether she is or may be pregnant.
Choosing alternative techniques
If a pregnancy has been confirmed or cannot be clearly ruled out, the necessity of applying radiation has to be evaluated considering an especially careful balancing of the risks and benefits. The examination should be postponed until the end of pregnancy, if possible, or alternative techniques (with lower or no radiation dose, for example ultrasound) should be considered.
Ultrasound diagnostics of the fetus
According to the German Radiation Protection Ordinance being in force since 31 December 2018 it is not allowed to apply sonography to a pregnant woman for non-medical purposes. This includes keepsake videos, i.e., a mere imaging of the fetus without medical indication.
Biological radiation effects
A distinction is made between two categories of biological radiation effects: deterministic and stochastic radiation effects.
- Deterministic effects (also termed "tissue reactions") occur through the massive killing of cells in an organ or tissue system: If the killing of too many tissue cells leads to an imbalance between cell replenishment and cell loss and if this imbalance exceeds a critical threshold level, the affected organ or tissue is damaged. For deterministic effects, threshold doses are assumed below which the number of cells killed is too low to permanently impair the function of organs and tissues. Above the threshold dose, the severity of deterministic effects increases with increasing dose.
Stochastic effects result from changes in the genetic information of the cells (DNA). Cellular control mechanisms may thus be disturbed. These effects can subsequently lead to malignant diseases such as cancer or leukaemia. Between the radiation exposure and the onset of cancer or leukaemia, there is a so-called latency period which can last several years or even decades. The probability that stochastic effects will occur increases with increasing dose. A threshold dose - as with deterministic effects - is not assumed.
Effects
Malformations and developmental disorders in the unborn child belong to the deterministic effects of radiation exposure. Their occurrence does not only depend on the level of radiation dose, but also on the developmental stage of the unborn child and thus on the time of the radiation exposure in the course of the pregnancy.
- Early phase of pregnancy: radiation exposure may lead to failure of implantation or death of the fertilized egg. The dose threshold value for this effect is at least 50 to 100 millisieverts (mSv) (uterus dose).
- Between the 4th and 10th week of pregnancy (counted from the first day of the last period): during the so-called organogenesis, the cells divide and differentiate. Embryonic organ primordia, for example for the heart and nervous system, are formed. During this phase, there is a risk of malformations. Dose thresholds have been observed for this in animal experiments. For humans, dose threshold values of at least 50 to 100 mSv are assumed.
- From the 10th week of pregnancy: from this period onwards, radiation exposures may lead to brain maldevelopments. In the case of the atomic bomb survivors of Hiroshima and Nagasaki, mental retardation was observed more frequently in children who had been exposed in utero to the atomic bombings during this phase of pregnancy. A threshold dose of about 300 mSv is assumed for this radiation effect.
In a standard radiological or nuclear medicine examination the dose for the unborn child is generally well below 50 mSv, i.e. the lowest estimated value for the threshold.
The probability of the occurrence of stochastic late effects does not depend on the developmental stage of the unborn child. It is considered an established fact that the risk of cancer, especially the risk of leukaemia, is increased in children who have been exposed to radiation in utero. However, the corresponding risk estimates are subject to considerable uncertainties.
State of 2021.10.12