-
Topics
Subnavigation
Topics
Electromagnetic fields
- What are electromagnetic fields?
- High-frequency fields
- Radiation protection in mobile communication
- Static and low-frequency fields
- Radiation protection relating to the expansion of the national grid
- Radiation protection in electromobility
- The Competence Centre for Electromagnetic Fields
Optical radiation
- What is optical radiation?
- UV radiation
- Visible light
- Infrared radiation
- Application in medicine and wellness
- Application in daily life and technology
Ionising radiation
- What is ionising radiation?
- Radioactivity in the environment
- Applications in medicine
- Applications in daily life and in technology
- Radioactive radiation sources in Germany
- Register high-level radioactive radiation sources
- Type approval procedure
- Items claiming to provide beneficial effects of radiation
- Cabin luggage security checks
- Radioactive materials in watches
- Ionisation smoke detectors (ISM)
- Radiation effects
- What are the effects of radiation?
- Effects of selected radioactive materials
- Consequences of a radiation accident
- Cancer and leukaemia
- Hereditary radiation damage
- Individual radiosensitivity
- Epidemiology of radiation-induced diseases
- Ionising radiation: positive effects?
- Radiation protection
- Nuclear accident management
- Service offers
-
The BfS
Subnavigation
The BfS
- Working at the BfS
- About us
- Science and research
- Laws and regulations
- Radiation Protection Act
- Ordinance on Protection against the Harmful Effects of Ionising Radiation
- Ordinance on Protection against the Harmful Effects of Non-ionising Radiation in Human Applications (NiSV)
- Frequently applied legal provisions
- Dose coefficients to calculate radiation exposure
- Links
Possible positive effects of ionising radiation - hormesis
- It is highly controversial, whether low doses of ionising radiation may have a positive effect on biological systems.
- The positive effects seen sporadically but often just claimed are gathered under the term "hormesis". The manifestations of these positive effects are manifold and variable. These effects cannot be observed regularly in studies conducted under almost identical conditions.
- Possible positive effects of ionising radiation refer to individual cases and must not be transferred to the population. Applications in this sense, such as radon balneotherapy for rheumatic diseases, should only be prescribed by a physician upon strict indication after balancing the individual risks and benefits based on his assessment.
"Bio-positive" effects, observed sporadically in the low dose range, include among other things
- the acceleration of growth or development processes,
- an increased cellular survival rate through the stimulation of repair processes as well as
- the reduced sensitivity of cells to high radiation doses after pre-irradiation with low doses ("conditioning", also referred to as "adaptive response").
Hormesis is also used to justify the radiotherapy of inflammatory conditions, stimulative irradiation as well as the treatment of rheumatism in radon (health) mines containing radon gas. The terms "hormesis" and "adaptive response" are often used synonymously.
Contradictory data from studies and trials on hormesis
Knowledge on the hormetic effects of ionising radiation in the low dose range in humans can only be gained through powerful epidemiological studies. Population groups exposed to different exposure levels due to natural background radiation are of particular interest in this context. However, the data gathered worldwide on this subject are contradictory; the same applies to data from animal studies.
Cell biology investigations show detailed research results on possible mechanisms of action. Most of these investigations were performed in an artificial environment outside the human body ("in vitro") using human lymphocytes (cellular components of blood).
Endpoints of these investigations are, for example, alterations in the number or structure of chromosomes after irradiation. In some trial series, such "aberrations" occurred significantly less often in pre-irradiated lymphocytes than in cells not pre-irradiated.
Adaptive response
Further studies have demonstrated that "adaptive response" may be induced by both acute and chronic radiation exposure. "Adaptive Response" effects were also found for other endpoints than aberrations, such as for the survival, for mutations as well as for the transformation of the cells. These effects could also be observed for other cell systems, for example, for the precursor cells of human connective tissue cells (fibroblasts) or also for breast cancer cell lines.
Significance for radiation protection
From the point of view of the most important international panels such as the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the International Commission on Radiological Protection (ICRP) or the Advisory Committee on the Biological Effects of Ionizing Radiation (BEIR), the results of these studies are insufficient to deviate from the assumption of the potentially detrimental effects of ionising radiation in the form of a linear no-threshold dose-response relationship in radiation protection. This assumption is based on the observations of population groups exposed to radiation and refers to the risk of developing or dying from radiation-induced cancer. It is striking that the results of such investigations on large exposed groups in the low-dose range are commonly best described by a linear no-threshold dose-response relationship. Effects in cellular systems on a laboratory scale, however, often show dose-response relationships diverging from linearity.
Possible positive effects of ionising radiation refer to individual cases and must not be transferred to the population. Applications in this sense, such as radon balneotherapy for rheumatic diseases, should only be prescribed by a physician upon strict indication after balancing the individual risks and benefits based on his assessment.
State of 2023.01.30