-
Themen
Unternavigationspunkte
Themen
Elektromagnetische Felder
- Was sind elektromagnetische Felder?
- Hochfrequente Felder
- Was sind hochfrequente Felder?
- Quellen
- Schnurlose Festnetztelefone
- Kabellose Geräteverbindungen
- Kabellose In-Ear-Kopfhörer
- Babyüberwachungsgeräte
- BOS-Funk
- Freie Sprechfunkdienste und Amateurfunk
- Rundfunk und Fernsehen
- Mikrowellenkochgeräte
- Intelligente Stromzähler - Smart Meter
- Ganzkörperscanner
- Radaranlagen
- Wirkungen
- Schutz
- Strahlenschutz beim Mobilfunk
- Statische und niederfrequente Felder
- Strahlenschutz beim Ausbau der Stromnetze
- Strahlenschutz bei der Elektromobilität
- Kompetenzzentrum Elektromagnetische Felder
Optische Strahlung
- Was ist optische Strahlung?
- UV-Strahlung
- Sichtbares Licht
- Infrarot-Strahlung
- Anwendung in Medizin und Wellness
- Anwendung in Alltag und Technik
Ionisierende Strahlung
- Was ist ionisierende Strahlung?
- Radioaktivität in der Umwelt
- Wo kommt Radioaktivität in der Umwelt vor?
- Natürliche Strahlung in Deutschland
- Luft, Boden und Wasser
- Radon
- Lebensmittel
- Welche Radionuklide kommen in Nahrungsmitteln vor?
- Natürliche Radioaktivität in der Nahrung
- Natürliche Radioaktivität in Paranüssen
- Strahlenbelastung von Pilzen und Wildbret
- Strahlenbelastung durch natürliche Radionuklide im Trinkwasser
- Natürliche Radionuklide in Mineralwässern
- Baumaterialien
- Altlasten
- Industrielle Rückstände (NORM)
- Labore des BfS
- Anwendungen in der Medizin
- Diagnostik
- Früherkennung
- Strahlentherapie
- BeVoMed: Meldung bedeutsamer Vorkommnisse
- Verfahren zur Strahlenanwendung am Menschen zum Zweck der medizinischen Forschung
- Orientierungshilfe
- Allgemeines und Veranstaltungshinweise
- Neuigkeiten zum Verfahren
- FAQs: Einreichung bis 30.06.2025
- FAQs: Einreichung ab 01.07.2025
- Anzeige mit Einreichung bis 30.06.2025
- Antrag auf Genehmigung bis 30.06.2025
- Anzeige mit Einreichung ab 01.07.2025
- Antrag auf Genehmigung ab 01.07.2025
- Abbruch, Unterbrechung oder Beendigung
- Registrierte Ethik-Kommissionen
- Anwendungen in Alltag und Technik
- Radioaktive Strahlenquellen in Deutschland
- Register hochradioaktiver Strahlenquellen
- Bauartzulassungsverfahren
- Gegenstände mit angeblich positiver Strahlenwirkung
- Handgepäck-Sicherheitskontrollen
- Radioaktive Stoffe in Uhren
- Ionisationsrauchmelder (IRM)
- Strahlenwirkungen
- Wie wirkt Strahlung?
- Wirkungen ausgewählter radioaktiver Stoffe
- Polonium-210
- Plutonium
- Uran
- Folgen eines Strahlenunfalls
- Krebserkrankungen
- Vererbbare Strahlenschäden
- Individuelle Strahlenempfindlichkeit
- Epidemiologie strahlenbedingter Erkrankungen
- Ionisierende Strahlung: positive Wirkungen?
- Strahlenschutz
- Nuklearer Notfallschutz
- Serviceangebote
-
BfS
Unternavigationspunkte
BfS
- Stellenangebote
- Arbeiten im BfS
- Wir über uns
- Wissenschaft und Forschung
- Forschung im BfS
- Gesellschaftliche Aspekte des Strahlenschutzes
- Natürliche Strahlenexposition
- Wirkung und Risiken ionisierender Strahlung
- Medizin
- Notfallschutz
- Radioökologie
- Elektromagnetische Felder
- Optische Strahlung
- Europäische Partnerschaft
- Wissenschaftliche Kooperationen
- Gesetze und Regelungen
- Strahlenschutzgesetz
- Verordnung zum Schutz vor der schädlichen Wirkung ionisierender Strahlung
- Verordnung zum Schutz vor schädlichen Wirkungen nichtionisierender Strahlung (NiSV)
- Häufig genutzte Rechtsvorschriften
- Dosiskoeffizienten zur Berechnung der Strahlenexposition
- Links
- Services des BfS
- Stellenangebote
Polonium-210
- Polonium-210 ist das in der Natur am häufigsten vorkommende Polonium-Isotop. Es wird in der radioaktiven Zerfallskette von Uran-238 als letztes radioaktives Kettenglied gebildet. Insgesamt ist das natürliche Vorkommen an Polonium äußerst gering.
- Polonium-210 hat eine physikalische Halbwertszeit von 138 Tagen. Es emittiert beim radioaktiven Zerfall Alphateilchen, wobei Blei-206 entsteht.
- Eine Gesundheitsgefährdung durch radioaktives Polonium kann nur eintreten, wenn das Radionuklid mit der Nahrung oder mit dem Trinkwasser durch Einatmen (Inhalation) oder über die Haut, beispielsweise über offene Wunden in den Körper aufgenommen wird.
- Die Mengen an natürlich aufgenommenem Polonium sind so gering, dass sie praktisch keine gesundheitlichen Auswirkungen zur Folge haben. Gesundheitlich bedenkliche Konsequenzen können daher praktisch nur bei unbeabsichtigter oder beabsichtigter (vorsätzlicher) Zufuhr von technisch erzeugtem Polonium auftreten.
Polonium ist das chemische Element mit der Ordnungszahl 84. Es ist ein silbriges, radioaktives Metall, das sich in chemischen Reaktionen ähnlich verhält wie Tellur und Bismut. Stabile Polonium-Isotope gibt es nicht. In der Natur ist Polonium-210 das am häufigsten vorkommende Polonium-Isotop. Es wird in der radioaktiven Zerfallskette von Uran-238 als letztes radioaktives Kettenglied gebildet. Insgesamt ist das natürliche Vorkommen an Polonium äußerst gering. Im Mittel befinden sich in einer Tonne Erde ca. 0,0002 Mikrogramm (µg) Polonium (entspricht 2 x 10 bis 10 ppm).
Technisch wurde Polonium-210 ursprünglich über eine chemische Abtrennung aus Pechblende bzw. den Zerfallsprodukten des Radiums hergestellt. Dies ist jedoch sehr aufwendig. Heute lässt sich Polonium-210 einfacher künstlich herstellen, indem man Bismut im Kernreaktor mit Neutronen bestrahlt.
Verwendung
Verwendet wird Polonium-210
- in Kombination mit Beryllium als Neutronenquelle,
- in Antistatikelektroden/-pinseln zur Elimination statischer Aufladungen,
- in hochempfindlichen optischen und mechanischen Messgeräten zur Elimination statischer Aufladungen und
- als leichtgewichtige, thermoelektrische Batterie in der Raumfahrt.
Physikalische Eigenschaften
Polonium-210 hat eine physikalische Halbwertszeit von 138 Tagen. Es emittiert beim radioaktiven Zerfall Alphateilchen, wobei Blei-206 entsteht. Die emittierten Alphateilchen haben zwar eine hohe Energie, jedoch nur eine geringe Reichweite. In Luft beträgt die Reichweite des Alphateilchens weniger als 4 Zentimeter, in menschlichem Gewebe (z.B. auch in der Haut) weniger als 0,1 Millimeter.
Aufnahme in den menschlichen Körper
Eine Gesundheitsgefährdung durch radioaktives Polonium kann daher nur eintreten, wenn das Radionuklid in den Körper aufgenommen wird (Inkorporation). Dies kann geschehen
- durch Aufnahme mit der Nahrung oder mit dem Trinkwasser (Ingestion)
- durch Einatmen (Inhalation) oder
- über die Haut, beispielsweise über offene Wunden.
Aufgrund des natürlichen Vorkommens nimmt der Mensch über die genannten Wege pro Jahr durchschnittlich 58 Bq Polonium-210 auf.
Für Raucher erhöht sich die Menge des über die Lunge aufgenommenen Polonium-210 aufgrund des natürlichen Gehaltes im Tabak. Zwischenprodukte der Uran-Radium-Zerfallsreihe können sich auf Tabakblättern ablagern oder über die Wurzeln in die Tabakpflanze aufgenommen werden. Durch deren radioaktiven Zerfall entsteht Polonium-210. Eine Zigarette enthält demnach etwa 9 bis 15 mBq Polonium-210.
Gesundheitliche Wirkungen
Da Polonium-210 eine sehr energiereiche Alpha-Strahlung aussendet, besitzt es eine hohe Radiotoxizität; seine chemische Toxizität ist um Größenordnungen geringer und spielt daher bei der gesundheitlichen Bewertung keine Rolle.
Nach Aufnahme des Poloniums durch Nahrung oder Trinkwasser wird ein großer Teil (50-90 %) auf direktem Weg über den Verdauungstrakt ausgeschieden. Der restliche Teil, der im Magen-Darm-Trakt ins Blut aufgenommen wird, verteilt sich - ebenso wie auch das über die Lunge aufgenommene Polonium - im gesamten Körper. Dabei beträgt die biologische Halbwertzeit von Polonium-210 im Körper 50 Tage. Das heißt: Nach 50 Tagen befindet sich noch 50 Prozent der aufgenommenen Poloniummenge im Körper. Der Rest wird sukzessive über Urin und Fäzes ausgeschieden.
Letztendlich ist die gesundheitliche Wirkung des Polonium-210 von der aufgenommenen Menge abhängig. So sind die oben genannten Mengen an natürlich aufgenommenem Polonium so gering, dass sie praktisch keine gesundheitlichen Auswirkungen zur Folge haben. Eine Abschätzung ergibt, dass ca. 833 Bq Polonium-210 pro Jahr über die Nahrung (also durch Ingestion) bzw. 303 Bq Polonium-210 pro Jahr über die Lunge (also über Inhalation) aufgenommen werden müssten, um im Bereich der effektiven Folgedosis von 1 Millisievert (mSv) pro Jahr zu liegen.
Gesundheitlich bedenkliche Konsequenzen können daher praktisch nur bei unbeabsichtigter oder beabsichtigter (vorsätzlicher) Zufuhr von technisch erzeugtem Polonium auftreten. In diesem Zusammenhang ist der mysteriöse Tod des früheren Geheimdienstoffiziers Alexander Litwinenko am 23. November 2006 zu nennen, in dessen Körper sehr hohe Aktivitäten an Polonium-210 nachgewiesen wurden. Aus Abschätzungen ist bekannt, dass die Aufnahme von etwa 20 MBq (20 Millionen Bq) Polonium-210 innerhalb von wenigen Tagen zum Tod führen kann. Aufgrund der sehr hohen spezifischen Aktivität von Polonium-210 (1,67×1014 Bq/g) entspricht diese Aktivität in Gramm ausgedrückt einer sehr geringen Menge (ca. 0,1 µg) Polonium-210.
Nachweismöglichkeiten
Weil durch Polonium-210 nur Alphastrahlung ausgesendet wird, kann es nicht mit einem Ganzkörperzähler nachgewiesen werden. Für den Nachweis einer Inkorporation ist es daher notwendig, Stuhl- oder Urinproben zu untersuchen. In Urinproben ist der Nachweis einfacher als in Stuhlproben. Die Nachweisgrenze für Polonium-210 im Urin ist so niedrig, dass es bereits weit unterhalb gesundheitsrelevanter Auswirkungen möglich ist, Polonium im Körper nachzuweisen.
Literatur
Oeh, U., Li, W.B., Gerstmann, U., Giussani, A., H.G. Paretzke (2007): Hintergrundinformationen zu Polonium-210 und Betrachtungen zur Biokinetik und internen Dosimetrie vor dem Hintergrund des Falls Litwinenko. In: Bayer, A., Faleschini, H., Krüger, S., Strobl, Chr. (Eds.), Vorkehrungen und Maßnahmen bei Radiologischen Ereignissen, Publikationsreihe Fortschritte im Strahlenschutz, Fachverband für Strahlenschutz, TÜV Media GmbH, Köln, 70-81
Stand: 28.06.2023