-
Themen
Unternavigationspunkte
Themen
Elektromagnetische Felder
- Was sind elektromagnetische Felder?
- Hochfrequente Felder
- Was sind hochfrequente Felder?
- Quellen
- Schnurlose Festnetztelefone
- Kabellose Geräteverbindungen
- Kabellose In-Ear-Kopfhörer
- Babyüberwachungsgeräte
- BOS-Funk
- Freie Sprechfunkdienste und Amateurfunk
- Rundfunk und Fernsehen
- Mikrowellenkochgeräte
- Intelligente Stromzähler - Smart Meter
- Ganzkörperscanner
- Radaranlagen
- Wirkungen
- Schutz
- Strahlenschutz beim Mobilfunk
- Statische und niederfrequente Felder
- Strahlenschutz beim Ausbau der Stromnetze
- Strahlenschutz bei der Elektromobilität
- Kompetenzzentrum Elektromagnetische Felder
Optische Strahlung
- Was ist optische Strahlung?
- UV-Strahlung
- Sichtbares Licht
- Infrarot-Strahlung
- Anwendung in Medizin und Wellness
- Anwendung in Alltag und Technik
Ionisierende Strahlung
- Was ist ionisierende Strahlung?
- Radioaktivität in der Umwelt
- Wo kommt Radioaktivität in der Umwelt vor?
- Natürliche Strahlung in Deutschland
- Luft, Boden und Wasser
- Radon
- Lebensmittel
- Welche Radionuklide kommen in Nahrungsmitteln vor?
- Natürliche Radioaktivität in der Nahrung
- Natürliche Radioaktivität in Paranüssen
- Strahlenbelastung von Pilzen und Wildbret
- Strahlenbelastung durch natürliche Radionuklide im Trinkwasser
- Natürliche Radionuklide in Mineralwässern
- Baumaterialien
- Altlasten
- Industrielle Rückstände (NORM)
- Labore des BfS
- Anwendungen in der Medizin
- Diagnostik
- Früherkennung
- Strahlentherapie
- BeVoMed: Meldung bedeutsamer Vorkommnisse
- Verfahren zur Strahlenanwendung am Menschen zum Zweck der medizinischen Forschung
- Orientierungshilfe
- Allgemeines und Veranstaltungshinweise
- Neuigkeiten zum Verfahren
- FAQs: Einreichung bis 30.06.2025
- FAQs: Einreichung ab 01.07.2025
- Anzeige mit Einreichung bis 30.06.2025
- Antrag auf Genehmigung bis 30.06.2025
- Anzeige mit Einreichung ab 01.07.2025
- Antrag auf Genehmigung ab 01.07.2025
- Abbruch, Unterbrechung oder Beendigung
- Registrierte Ethik-Kommissionen
- Anwendungen in Alltag und Technik
- Radioaktive Strahlenquellen in Deutschland
- Register hochradioaktiver Strahlenquellen
- Bauartzulassungsverfahren
- Gegenstände mit angeblich positiver Strahlenwirkung
- Handgepäck-Sicherheitskontrollen
- Radioaktive Stoffe in Uhren
- Ionisationsrauchmelder (IRM)
- Strahlenwirkungen
- Wie wirkt Strahlung?
- Wirkungen ausgewählter radioaktiver Stoffe
- Folgen eines Strahlenunfalls
- Krebserkrankungen
- Vererbbare Strahlenschäden
- Individuelle Strahlenempfindlichkeit
- Epidemiologie strahlenbedingter Erkrankungen
- Ionisierende Strahlung: positive Wirkungen?
- Strahlenschutz
- Nuklearer Notfallschutz
- Serviceangebote
-
BfS
Unternavigationspunkte
BfS
- Stellenangebote
- Arbeiten im BfS
- Wir über uns
- Wissenschaft und Forschung
- Forschung im BfS
- Gesellschaftliche Aspekte des Strahlenschutzes
- Natürliche Strahlenexposition
- Wirkung und Risiken ionisierender Strahlung
- Medizin
- Notfallschutz
- Radioökologie
- Elektromagnetische Felder
- Optische Strahlung
- Europäische Partnerschaft
- Wissenschaftliche Kooperationen
- Gesetze und Regelungen
- Strahlenschutzgesetz
- Verordnung zum Schutz vor der schädlichen Wirkung ionisierender Strahlung
- Verordnung zum Schutz vor schädlichen Wirkungen nichtionisierender Strahlung (NiSV)
- Häufig genutzte Rechtsvorschriften
- Dosiskoeffizienten zur Berechnung der Strahlenexposition
- Links
- Services des BfS
- Stellenangebote
Radon im Boden
Beim radioaktiven Zerfall von Uran-238 in der Erde entsteht Radium, das wiederum zu Radon zerfällt. Ein Teil des Radons wird in die Poren der Böden und Gesteine freigesetzt. Je uranhaltiger der Boden ist, desto mehr Radon kommt darin vor.
Gemeinsam mit anderen Bodengasen gelangt Radon durch Strömungen und Diffusion aus dem Boden an die Erdoberfläche und wird in die Atmosphäre freigesetzt.
Witterung beeinflusst Radon-Konzentration im Boden
Bis zu einer Tiefe von weniger als einem Meter schwankt die Radon-Konzentration im Boden abhängig von den Witterungsverhältnissen erheblich:
- So sorgen Regen, Schnee oder Frost dafür, dass die Poren der Böden und Gesteine sich verstärkt mit Wasser füllen bzw. einfrieren. Dadurch kann radonhaltige Luft schwerer aus dem Boden entweichen und bleibt dort; so dass die Radon-Konzentration in den obersten Schichten des Bodens steigt.
- Auch bei steigendem Luftdruck erhöht sich die Radon-Konzentration im Boden: Der atmosphärische Druck drückt zusätzlich Luft aus der Atmosphäre in die Poren von Böden und Gesteinen und sorgt so dafür, dass die radonhaltige Luft den Boden schlechter verlassen kann und dort zurückbleibt. Bei fallendem Luftdruck wird verstärkt Radon freigesetzt.
Erst in tieferen Bodenschichten ist die Radon-Konzentration stabil. Je gasdurchlässiger der Boden ist, desto größer ist der Einfluss von Witterungsverhältnissen – und desto tiefer ist erst eine stabile Radon-Konzentration anzutreffen.
Radium, bei dessen Zerfall im Erdboden Radon entsteht, hat eine lange Halbwertzeit von etwa 1.600 Jahren. Durch diese lange Halbwertzeit ist die Radon-Konzentration in der Bodenluft auch längerfristig stabil. Ist die Radon-Konzentration an einem Standort bekannt, sind erneute Messungen deshalb nur sinnvoll, wenn größere Eingriffe im Untergrund vorgenommen wurden.
Bodenbeschaffenheit beeinflusst Ausbreitung von Radon
Der Transport von Radon aus der Tiefe an die Erdoberfläche wird von der Gasdurchlässigkeit der Böden sowie lokal vorkommenden Strömungswegen bestimmt. Je mehr Spalten und Risse der Untergrund aufweist, desto leichter breitet Radon sich aus. An manchen Stellen kann die Radon-Konzentration in der Bodenluft deutlich über den für die Region typischen Werten liegen – zum Beispiel
an Klüften:
Klüfte sind geologische Verwerfungen im Boden, die Wegsamkeiten für Wasser bieten. Im Wasser gelöstes Radium, das beim Zerfall von Uran entsteht, kann sich an den Rändern von Klüften ablagern, wo es bei seinem radioaktiven Zerfall Radon freisetzt.
an Bergsenkungen:
An Bergsenkungen ist das Gestein in der Regel aufgelockert und damit durchlässiger für radonhaltige Bodenluft.
an der Grenze zweier Gesteinsarten:
Grenzen zwei verschiedene Gesteinsarten aneinander, kann sich dort mehr Uran als an anderen Stellen abgesetzt haben. Bei seinem Zerfall entsteht Radon.
Wie die Radonsituation beispielsweise an einem Bauplatz ist, können Bauherren oder Bauplaner bei Bedarf über das Baugrundgutachten ermitteln lassen.
Grundwasser transportiert Radon
Radon kann sich auch im Grundwasser lösen und mit diesem im geologischen Untergrund transportiert werden.
Wo kommt Radon in Deutschland im Boden vor?
In Deutschland sind die Konzentrationen von Radon im Boden unterschiedlich, da Uran und Radium-226, bei dessen Zerfall Radon entsteht, in Deutschland regional in unterschiedlichem Maße vorkommen. Das gilt auch für die Durchlässigkeit des Bodens.
Das Bundesamt für Strahlenschutz (BfS) hat Karten zur regionalen Verteilung von Radon im Boden erstellt. Aussagen zu Einzelgebäuden oder Baugrundstücken sind aus den Prognosekarten niemals ableitbar.
Medien zum Thema
Broschüren und Video
Stand: 04.12.2024