-
Themen
Unternavigationspunkte
Themen
Elektromagnetische Felder
- Was sind elektromagnetische Felder?
- Hochfrequente Felder
- Was sind hochfrequente Felder?
- Quellen
- Schnurlose Festnetztelefone
- Kabellose Geräteverbindungen
- Kabellose In-Ear-Kopfhörer
- Babyüberwachungsgeräte
- BOS-Funk
- Freie Sprechfunkdienste und Amateurfunk
- Rundfunk und Fernsehen
- Mikrowellenkochgeräte
- Intelligente Stromzähler - Smart Meter
- Ganzkörperscanner
- Radaranlagen
- Wirkungen
- Schutz
- Strahlenschutz beim Mobilfunk
- Statische und niederfrequente Felder
- Strahlenschutz beim Ausbau der Stromnetze
- Strahlenschutz bei der Elektromobilität
- Kompetenzzentrum Elektromagnetische Felder
Optische Strahlung
- Was ist optische Strahlung?
- UV-Strahlung
- Sichtbares Licht
- Infrarot-Strahlung
- Anwendung in Medizin und Wellness
- Anwendung in Alltag und Technik
Ionisierende Strahlung
- Was ist ionisierende Strahlung?
- Radioaktivität in der Umwelt
- Wo kommt Radioaktivität in der Umwelt vor?
- Natürliche Strahlung in Deutschland
- Luft, Boden und Wasser
- Radon
- Lebensmittel
- Welche Radionuklide kommen in Nahrungsmitteln vor?
- Natürliche Radioaktivität in der Nahrung
- Natürliche Radioaktivität in Paranüssen
- Strahlenbelastung von Pilzen und Wildbret
- Strahlenbelastung durch natürliche Radionuklide im Trinkwasser
- Natürliche Radionuklide in Mineralwässern
- Baumaterialien
- Altlasten
- Industrielle Rückstände (NORM)
- Labore des BfS
- Anwendungen in der Medizin
- Diagnostik
- Früherkennung
- Strahlentherapie
- BeVoMed: Meldung bedeutsamer Vorkommnisse
- Verfahren zur Strahlenanwendung am Menschen zum Zweck der medizinischen Forschung
- Orientierungshilfe
- Allgemeines und Veranstaltungshinweise
- Neuigkeiten zum Verfahren
- FAQs: Einreichung bis 30.06.2025
- FAQs: Einreichung ab 01.07.2025
- Anzeige mit Einreichung bis 30.06.2025
- Antrag auf Genehmigung bis 30.06.2025
- Anzeige mit Einreichung ab 01.07.2025
- Antrag auf Genehmigung ab 01.07.2025
- Abbruch, Unterbrechung oder Beendigung
- Registrierte Ethik-Kommissionen
- Anwendungen in Alltag und Technik
- Radioaktive Strahlenquellen in Deutschland
- Register hochradioaktiver Strahlenquellen
- Bauartzulassungsverfahren
- Gegenstände mit angeblich positiver Strahlenwirkung
- Handgepäck-Sicherheitskontrollen
- Radioaktive Stoffe in Uhren
- Ionisationsrauchmelder (IRM)
- Strahlenwirkungen
- Wie wirkt Strahlung?
- Wirkungen ausgewählter radioaktiver Stoffe
- Folgen eines Strahlenunfalls
- Krebserkrankungen
- Vererbbare Strahlenschäden
- Individuelle Strahlenempfindlichkeit
- Epidemiologie strahlenbedingter Erkrankungen
- Ionisierende Strahlung: positive Wirkungen?
- Strahlenschutz
- Nuklearer Notfallschutz
- Serviceangebote
-
BfS
Unternavigationspunkte
BfS
- Stellenangebote
- Arbeiten im BfS
- Wir über uns
- Wissenschaft und Forschung
- Forschung im BfS
- Gesellschaftliche Aspekte des Strahlenschutzes
- Natürliche Strahlenexposition
- Wirkung und Risiken ionisierender Strahlung
- Medizin
- Notfallschutz
- Radioökologie
- Elektromagnetische Felder
- Optische Strahlung
- Europäische Partnerschaft
- Wissenschaftliche Kooperationen
- Gesetze und Regelungen
- Strahlenschutzgesetz
- Verordnung zum Schutz vor der schädlichen Wirkung ionisierender Strahlung
- Verordnung zum Schutz vor schädlichen Wirkungen nichtionisierender Strahlung (NiSV)
- Häufig genutzte Rechtsvorschriften
- Dosiskoeffizienten zur Berechnung der Strahlenexposition
- Links
- Services des BfS
- Stellenangebote
Was sind Hochspannungsleitungen?
- Der Stromtransport mit Hochspannung ist effizienter als mit niedriger Spannung, da weniger Energie verloren geht.
- Bis zu 380.000 Volt (380 kV) tragen die Überlandleitungen für den Stromtransport von den Kraftwerken zu den Städten und Ballungsgebieten.
- Die Festlegung der Spannungshöhe einer Leitung erfolgt anhand der Länge der Übertragungsstrecke und der benötigten Leistung bei den Stromempfängern.
In der Steckdose zu Hause kommt der Strom mit einer Spannung von 230 Volt (230 V) an. Für den Transport dorthin werden jedoch weit höhere Spannungen verwendet. Bis zu 380.000 Volt (380 kV) tragen die Überlandleitungen für den Stromtransport von den Kraftwerken zu den Städten und Ballungsgebieten.
Transport
Der Stromtransport mit Hochspannung ist effizienter als mit niedriger Spannung, da weniger Energie verloren geht. Trotzdem kann die Spannung nicht unbegrenzt erhöht werden.
Die Festlegung der Spannungshöhe einer Leitung erfolgt anhand der Länge der Übertragungsstrecke und der benötigten Leistung bei den Stromempfängern.
Bezeichnung | Spannung | Beispiel / Anwendung | |
---|---|---|---|
Niederspannung | bis 1.000 Volt | 230/400 Volt; Haus- und Gewerbeanschlüsse | |
Hochspannung | Mittelspannung | über 1.000 Volt | 10 Kilovolt, 20 Kilovolt, 30 Kilovolt; örtliche/überörtliche Verteilnetze, Versorgung von Ortschaften und Industrie |
Hochspannung | über 30.000 Volt | 110 Kilovolt; Anschluss kleinerer Kraftwerke, regionale Transportnetze, Versorgung von Städten und Großindustrie | |
Höchstspannung | über 150.000 Volt | 220 Kilovolt und 380 Kilovolt; Anschluss von Großkraftwerken, überregionale Transportnetze, Stromhandel |
Gleich- und Wechselstrom
Am Anfang des 20. Jahrhunderts gab es Hochspannungsnetze nur mit Wechselstrom. Anders als Gleichstrom wechselt dieser in Westeuropa 100 Mal pro Sekunde die Richtung. Das ergibt eine Frequenz von 50 Hertz (50 Hz).
Heute ist es möglich, Hochspannungsnetze auch mit Gleichstrom zu betreiben. Dabei wird der Energieverlust vermieden, der bei Wechselstrom entsteht. Somit ist für lange Transportstrecken die Hochspannungs-Gleichstrom-Übertragung (HGÜ) eine gute Alternative. In Westeuropa wird sie vor allem bei der Stromübertragung mit Seekabeln eingesetzt.
Freileitung und Erdkabel
Für den Stromtransport über Land werden überwiegend Freileitungen, aber auch Erdkabel verwendet.
Bei Freileitungen dienen die an den Masten geführten Leiterseile zum Stromtransport. Da die Leiterseile – anders als beim Kabel – nicht von einer isolierenden Schicht umgeben sind, hängen sie außerhalb der Reichweite von Personen. Hoch- und Höchstspannungsleitungen sind in Deutschland überwiegend als Freileitungen ausgeführt. Der regionale Transport erfolgt oft noch über Niederspannungsfreileitungen, wobei die Häuser meist über Dachständer versorgt werden.
Um zu erkennen, für welche Spannungshöhe eine Freileitung genutzt wird, kann als erster Anhaltspunkt die Mastkonstruktion dienen:
- Hoch- und Höchstspannungsleitungen werden üblicherweise an hohen Stahlgittermasten geführt,
- für Nieder- und Mittelspannungsleitungen werden eher kleinere Holz-, Beton- oder Stahlrohrmasten verwendet.
Den zweiten Anhaltspunkt liefert die Eingrenzung der Spannungsebene durch einen genauen Blick auf die Leiterseile:
Höchstspannungsleitungen:
Bei 220 kV-Leitungen werden gebündelte Leiter oft aus zwei, bei 380 kV-Leitungen aus drei oder vier eng parallel zueinander geführten Einzelseilen verwendet. In regelmäßigen Abständen sind Abstandhalter zwischen den Einzelseilen angebracht (wie z. B. in dem Bild der 380 kV Freileitungs-Trasse zu erkennen ist).
- Hochspannungsleitungen:
Für eine Spannung von 110 kV werden Bündelleitungen deutlich seltener verwendet.
Erdkabel können einen oder mehrere Leiter enthalten, die jeweils einzeln durch eine Isolierung vor gegenseitiger Berührung geschützt sind. Dadurch liegen die Leiter in einem viel geringeren Abstand zueinander als bei Freileitungen. Erdkabel werden bei niedriger Spannung vor allem für Haus- und Gewerbeanschlüsse genutzt. Sie werden aber auch immer häufiger für den Stromtransport über große Entfernungen als Höchstspannungsleitungen verwendet.
Anwendung finden auch gasisolierte Übertragungsleitungen (GIL), die in Deutschland bisher nur auf sehr kurzen Strecken eingesetzt werden, z. B. beider Ausleitung aus Innenräumen von Schaltanlagen. Gasisolierte Übertragungsleitungen bestehen aus einem inneren Aluminiumleiter, der in regelmäßigen Abständen auf Stütz- oder Scheibenisolatoren in einem Aluminiumrohr geführt wird. Zur Isolierung wird das Rohr mit einem Gas befüllt.
Stand: 11.03.2025