-
Themen
Unternavigationspunkte
Themen
Elektromagnetische Felder
- Was sind elektromagnetische Felder?
- Hochfrequente Felder
- Was sind hochfrequente Felder?
- Quellen
- Schnurlose Festnetztelefone
- Kabellose Geräteverbindungen
- Kabellose In-Ear-Kopfhörer
- Babyüberwachungsgeräte
- BOS-Funk
- Freie Sprechfunkdienste und Amateurfunk
- Rundfunk und Fernsehen
- Mikrowellenkochgeräte
- Intelligente Stromzähler - Smart Meter
- Ganzkörperscanner
- Radaranlagen
- Wirkungen
- Schutz
- Strahlenschutz beim Mobilfunk
- Statische und niederfrequente Felder
- Strahlenschutz beim Ausbau der Stromnetze
- Strahlenschutz bei der Elektromobilität
- Kompetenzzentrum Elektromagnetische Felder
Optische Strahlung
- Was ist optische Strahlung?
- UV-Strahlung
- Sichtbares Licht
- Infrarot-Strahlung
- Anwendung in Medizin und Wellness
- Anwendung in Alltag und Technik
Ionisierende Strahlung
- Was ist ionisierende Strahlung?
- Radioaktivität in der Umwelt
- Wo kommt Radioaktivität in der Umwelt vor?
- Natürliche Strahlung in Deutschland
- Luft, Boden und Wasser
- Radon
- Lebensmittel
- Welche Radionuklide kommen in Nahrungsmitteln vor?
- Natürliche Radioaktivität in der Nahrung
- Natürliche Radioaktivität in Paranüssen
- Strahlenbelastung von Pilzen und Wildbret
- Strahlenbelastung durch natürliche Radionuklide im Trinkwasser
- Natürliche Radionuklide in Mineralwässern
- Baumaterialien
- Altlasten
- Industrielle Rückstände (NORM)
- Labore des BfS
- Anwendungen in der Medizin
- Diagnostik
- Früherkennung
- Strahlentherapie
- BeVoMed: Meldung bedeutsamer Vorkommnisse
- Verfahren zur Strahlenanwendung am Menschen zum Zweck der medizinischen Forschung
- Orientierungshilfe
- Allgemeines und Veranstaltungshinweise
- Neuigkeiten zum Verfahren
- FAQs: Einreichung bis 30.06.2025
- FAQs: Einreichung ab 01.07.2025
- Anzeige mit Einreichung bis 30.06.2025
- Antrag auf Genehmigung bis 30.06.2025
- Anzeige mit Einreichung ab 01.07.2025
- Antrag auf Genehmigung ab 01.07.2025
- Abbruch, Unterbrechung oder Beendigung
- Registrierte Ethik-Kommissionen
- Anwendungen in Alltag und Technik
- Radioaktive Strahlenquellen in Deutschland
- Register hochradioaktiver Strahlenquellen
- Bauartzulassungsverfahren
- Gegenstände mit angeblich positiver Strahlenwirkung
- Handgepäck-Sicherheitskontrollen
- Radioaktive Stoffe in Uhren
- Ionisationsrauchmelder (IRM)
- Strahlenwirkungen
- Wie wirkt Strahlung?
- Wirkungen ausgewählter radioaktiver Stoffe
- Folgen eines Strahlenunfalls
- Krebserkrankungen
- Vererbbare Strahlenschäden
- Individuelle Strahlenempfindlichkeit
- Epidemiologie strahlenbedingter Erkrankungen
- Ionisierende Strahlung: positive Wirkungen?
- Strahlenschutz
- Nuklearer Notfallschutz
- Serviceangebote
-
BfS
Unternavigationspunkte
BfS
- Stellenangebote
- Arbeiten im BfS
- Wir über uns
- Wissenschaft und Forschung
- Forschung im BfS
- Gesellschaftliche Aspekte des Strahlenschutzes
- Natürliche Strahlenexposition
- Wirkung und Risiken ionisierender Strahlung
- Medizin
- Notfallschutz
- Radioökologie
- Elektromagnetische Felder
- Optische Strahlung
- Europäische Partnerschaft
- Wissenschaftliche Kooperationen
- Gesetze und Regelungen
- Strahlenschutzgesetz
- Verordnung zum Schutz vor der schädlichen Wirkung ionisierender Strahlung
- Verordnung zum Schutz vor schädlichen Wirkungen nichtionisierender Strahlung (NiSV)
- Häufig genutzte Rechtsvorschriften
- Dosiskoeffizienten zur Berechnung der Strahlenexposition
- Links
- Services des BfS
- Stellenangebote
Entwicklung radioanalytischer Schnellmethoden im Radioökologielabor
Projektleitung: Dr. Eva Kabai, Bundesamt für Strahlenschutz
Beginn Teilprojekt: 01.08.2017
Ende Teilprojekt: 31.08.2020
Finanzierung: Eigenforschung BfS
Im Notfallschutz und bei der nuklearspezifischen Gefahrenabwehr sind möglichst rasche Informationen über die Kontamination unerlässlich, um die radiologische Situation bewerten und gegebenenfalls Maßnahmen ergreifen zu können. Für die Bestimmung rein alpha- und betastrahlender Isotope stehen in der Regel nur aufwendige, zeitintensive radiochemische Verfahren zur Verfügung. Außerdem sind viele Analyseverfahren auf einfache Matrizen beschränkt. Daher ist für Notfallsituationen die Entwicklung schneller und allgemein anwendbarer radioanalytischer Methoden entscheidend.
Zielsetzung
In einem radiologischen Notfall sollten schnelle radioanalytische Methoden die Entscheidungsträger dabei unterstützen, die richtigen Maßnahmen zu treffen, um die Strahlenexposition der Bevölkerung zu vermeiden oder zu minimieren. Insbesondere für rein alpha- oder betastrahlende Radionuklide, bei denen die Messung ohne aufwendige Probenvorbereitung und radiochemische Trennungsschritte in der Regel nicht möglich ist, sind hierfür Analyseverfahren, die für möglichst viele Proben Matrizen anwendbar sind, essentiell. In manchen Fällen ist zudem die Menge der verfügbaren Probe ein limitierender Faktor, da die Probenmenge eventuell nicht für alle zu bestimmenden Nuklide ausreicht. Um diese Herausforderungen zu meistern, sollten kombinierte Schnellmethoden, die möglichst universell für viele Probenarten anwendbar sind, entwickelt werden. Diese erlauben die gleichzeitige und schnelle Bestimmung mehrerer Radionuklide in einem Probenaliquot, also einer Teilprobe.
Durchführung
Das Ziel einer Promotionsarbeit im Radioökologielabor war, bestehende radiochemische Analysemethoden im Hinblick auf den erforderlichen Zeitaufwand zu optimieren und neue (Schnell )Verfahren für komplexe Matrizen zu entwickeln. Der Fokus lag dabei insbesondere auf der Bestimmung wichtiger rein alpha- und betastrahlender Leitnuklide wie Pu-239/Pu-240 und Sr-90 in Lebensmitteln und Umweltproben.
Die Promotionsarbeit wurde in drei große Arbeitspakete unterteilt. Im ersten Arbeitspaket wurde eine umfassende Literaturrecherche durchgeführt. Das zweite Arbeitspaket befasste sich mit der tatsächlichen Methodenentwicklung auf der Grundlage des aktuellen Standes von Wissenschaft und Technik. Im dritten Arbeitspaket wurde die entwickelte Schnellmethode evaluiert und validiert.
Die Schnellmethode beginnt mit der Probenvorbereitung, in der Regel durch einen Mikrowellenaufschluss. Nach der Vorbereitung wird die Probe über mehrere sogenannte extraktionschromatographische Kartuschen geleitet, um die einzelnen zu bestimmenden Radionuklide (Aktiniden und Sr-Isotope) voneinander zu trennen bzw. zu reinigen (siehe Abb.). Danach erfolgt die Herstellung der Messpräparate durch Reduzierung der Probenvolumen oder durch Mikromitfällung. Die nachfolgende Messung der Präparate wird entweder mit einem Flüssigszintillationsspektrometer (LSC) oder durch Alphaspektrometrie durchgeführt.
Im Rahmen der Promotionsarbeit konnte die Bestimmungszeit für die Alpha- bzw. Betastrahler in Lebensmittelproben auf einen Tag reduziert werden. Die erreichten Nachweisgrenzen der Schnellmethode erfüllen die Anforderungen an Nachweisgrenzen in Notfallsituationen.
Wesentliche Punkte waren darüber hinaus die Dokumentation und Veröffentlichung der entwickelten radioanalytischen Schnellmethode sowie deren Einführung in die Routinetätigkeit des Radioökologielabors. So entstanden ein "peer reviewed" Artikel (Dolique et al., 2019), eine Arbeitsanweisung (BfS, 2020) sowie die Promotionsarbeit (Dolique, 2021), die bei der Fakultät für Chemie der Technischen Universität München nach nur drei Jahren eingereicht und 2021 erfolgreich verteidigt wurde.
Literatur
Dolique et al. (2019). Fast method for the determination of radiostrontium and plutonium isotopes in food samples. Journal of Radioanalytical and Nuclear Chemistry, 322, 1423–1430
BfS (2020). Arbeitsanweisung Nr. [UR 6-AA-SrAmThUPu]: Verfahren zur Schnellbestimmung von Sr-, Am-, Th-, U- und Pu-Isotopen in Lebensmitteln und Umweltproben. Bundesamt für Strahlenschutz, 2020
Dolique (2021). Entwicklung einer radiochemischen Schnellmethode zur Bestimmung von rein alpha- und betastrahlenden Nukliden in Umwelt- und Lebensmittelproben. Promotionsarbeit, Fakultät für Chemie der Technischen Universität München, 2021
Stand: 11.05.2023