Navigation and service

Emergency scenarios

  • It depends on the type of accident which and how many radioactive substances are likely to be released in a radiological emergency and what impacts on the environment and the population in Germany are to be expected.
  • A variety of emergency scenarios can be used to make more specific plans for radiological emergency preparedness by developing individual strategies for each scenario to protect the population and the emergency forces.

Sketches: nuclear power plant, transport vehicles, satellite, nuclear facilities, and others, each with a radioactivity symbol

There are different types of accidents that can cause radioactive material to be released into the environment, such as an accident in a German nuclear power plant, a transportation accident or a crash of a satellite with nuclear fuel on board.

It depends on the type of accident which and how many radioactive substances are likely to be released and what impacts on the environment and the population in Germany are to be expected. The different types of accidents are therefore described in "emergency scenarios".

Why do we need emergency scenarios?

Preparation and planning are very important in order to be able to act quickly and prudently in an emergency. With the help of the various emergency scenarios, radiological emergency preparedness can be planned in a more targeted manner by defining reference scenarios for different possible types of accidents.

Strategies to protect the population and the emergency forces have been defined for each of these emergency scenario. The main objective of these protection strategies is to reduce the radiation exposure of people and the environment in the event of an accident. Therefore, different measures are also recommended for each scenario in order to protect the population in the best possible way. Both emergency response measures (such as evacuation, keeping people indoors, or taking high-dose iodine tablets) and precautionary radiation measures (such as food restrictions) can play a role.

Who defined the emergency scenarios?

According to the EU, emergency response planning should be event-specific and scenario-specific (Council Directive 2013/59/EURATOM, Annex XI).

In Germany, the emergency scenarios and the corresponding protection strategies are defined by the federal government. For this purpose, the general emergency plan is currently being developed, the adoption of which as a general administrative regulation is intended to implement the European legal requirement.

The emergency scenarios are regarded as reference scenarios. They are the starting point for estimating the radiological effects of the respective accident and for planning protection strategies. Current national and international recommendations and concepts are also incorporated into the protection strategies.

The emergency scenarios

Accident at a German nuclear power plantShow / Hide

Shutdown nuclear power plant with radioactive inventory (symbolic image)

This emergency scenario describes an accident with a release of radioactive substances in a German nuclear power plant (before removal of fuel elements) whose radiological impact may require civil protection measures and radiation protection precautions.

This scenario would apply to serious accidents at those German nuclear power plants that are still in post-operation.

Accident at a foreign nuclear power plant near the German borderShow / Hide

Nuclear power plant (symbolic image)

This emergency scenario describes an accident at a foreign nuclear power plant situated near the German border, whose potential radiological impact may require civil protection measures and radiation protection precautions on German territory.

"Near the German border" means that the nuclear power plant is situated no further than 100 kilometres from German territory.

Map of Europe with active nuclear power plants near the German border and in the rest of Europe Nuclear power plants near the German border and in the rest of EuropeLocations of nuclear power plants in Europe | Data source: IAEA

This scenario would apply to the following nuclear power plants:

  • Tihange (Belgium),
  • Cattenom (France),
  • Chooz (France),
  • Leibstadt (Switzerland),
  • Beznau (Switzerland),
  • Gösgen (Switzerland) and
  • Temelin (Czech Republic)

Accident at a nuclear power plant in the rest of EuropeShow / Hide

Nuclear power plant (symbolic image)

This emergency scenario describes an accident leading to a significant release of radioactive substances at a nuclear power plant in Europe situated more than 100 kilometres from German borders.

The probability for civil protection measures and precautionary radiation protection measures to protect the population on German territory is lower due to the greater distance to German national territory, but not excluded. In particular, precautionary radiation protection measures in the agricultural sector may play a role, as shown by the example of the accident at the Chornobyl nuclear power plant in 1986, which occurred more than 1,000 km away from German territory.

Map of Europe with active nuclear power plants near the German border and in the rest of Europe Nuclear power plants near the German border and in the rest of EuropeLocations of nuclear power plants in Europe | Data source: IAEA

This emergency scenario would apply to nuclear power plants in the following countries:

  • Belarus,
  • Belgium (except Tihange),
  • Bulgaria,
  • Finland,
  • France (except Cattenom),
  • the Netherlands,
  • the United Kingdom,
  • Romania,
  • Russia,
  • Sweden,
  • Slovakia,
  • Slovenia,
  • Spain,
  • Czech Republic (except Temelin),
  • Ukraine and
  • Hungary.

Accident at a nuclear power plant outside EuropeShow / Hide

Nuclear power plant (symbolic image)

This emergency scenario describes an accident leading to a significant release of radioactive substances at a nuclear power plant outside Europe. Civil protection measures for the benefit of the population on German territory would not be necessary due to the long distance, and radiation protection precautions would not be required either.

However, contamination of vehicles (aircraft, ships, motor vehicles) as well as of persons and goods entering Germany cannot be excluded. Slight increases of the activity concentration in the air are also possible. German nationals in the country of the accident or its neighbouring states might also be affected so that it must be decided if travel warnings should be issued.

The following countries outside Europe operate a larger number of nuclear power plants:

  • the USA,
  • China,
  • Russia,
  • South Korea,
  • India,
  • Canada and
  • Japan.

The International Atomic Energy Agency (IAEA) regularly publishes a list of the nuclear power reactors in operation worldwide.

Accidents in nuclear installations (other than nuclear power plants)Show / Hide

Nuclear facility (symbolic image)

This emergency scenario describes an accident at a nuclear installation which is not a nuclear power plant in Germany or in other countries. These may be, for example,

  • Research reactors,
  • Uranium enrichment plants,
  • Fuel element factories,
  • Isotope production or
  • Storage facilities for spent fuel elements.

The impact is limited to a much smaller scope than in the case of nuclear power plant accidents. Civil protection measures and radiation protection precautions may be necessary on a local scale.

The amount and composition of the radioactive substances released may differ significantly from those encountered in nuclear power plant accidents.

In Germany, this emergency scenario would among others apply to

  • the Lingen fuel element production plant,
  • the Gorleben pilot conditioning plant,
  • the research reactors in Garching and
  • the Gronau uranium enrichment plant.

Terrorist attack or other types of attacksShow / Hide

Graphic: Abused radioactive material in a suitcase

This emergency scenario describes a terrorist attack using radioactive materials in Germany. The consequences are limited to a particular location but may require both civil protection measures and radiation protection precautions on a local scale.

Such attacks may involve the release of various radioactive substances. If a release occurs, it is likely to be rapid and of relatively short duration. An example of this emergency scenario is the so-called "dirty bomb".

Transportation accidentShow / Hide

Transport of radioactive substances (symbolic image)

This emergency scenario describes an accident during the transportation of radioactive substances in which they are released (such as a road traffic accident). The consequences will probably be limited to a particular location.

Accidents can lead to the release of various radioactive substances, depending on the goods being transported, ranging from material needed for medical purposes to Castor transports of spent fuel elements. If a release occurs, it is likely to be rapid and of relatively short duration.

Orphan sources, open radioactive materialShow / Hide

Orphan radioactive material (symbolic image)

This emergency scenario describes a situation where an orphan (unregistered) radioactive source is discovered or where accidents occur during the handling of radioactive material.

The accidental melting of radioactive sources is also included in this emergency scenario.

The consequences of these events are limited to a very small scale. Typically, neither civil protection measures nor radiation protection precautions are necessary.

Satellite crashShow / Hide

Satellite with radioactive inventory (symbolic image)

This emergency scenario describes the crash of a satellite containing nuclear or radiologically relevant material. There are currently almost 50 satellites of this description in Earth orbit. The radioactive substances are located in small nuclear reactors or in radioisotope batteries on board and serve to supply energy.

Although safety precautions are in place for satellites containing nuclear or radiologically relevant material, there have been isolated crashes in the past that resulted in contamination spreading over a relatively large area. A satellite crash over Germany is very unlikely. Modern satellites are usually deliberately brought down over the Pacific in areas with little ship traffic.

If a satellite crashes over land, it is unlikely that a large number of people will be exposed to increased radiation. Only persons remaining in the vicinity of particles from the reactor fuel or who are in direct physical contact with such particles would be exposed to increased external gamma and beta radiation from deposited radioactive material.

Unclear situationShow / Hide

Question mark with radioactivity symbol serving as a dot

This emergency scenario describes a situation where press releases or rumours indicate that a release may have occurred, for example subsequently to an accident at a nuclear installation, yet this is not confirmed.

This emergency scenario includes, for example, the measurement of ruthenium-106 at numerous measuring points in Europe at the beginning of October 2017.

Nuclear weapon explosionShow / Hide

Nuclear weapons (symbolic image)

This emergency scenario describes emergencies connected with the explosion of a nuclear weapon – especially in the case of accidental or deliberate incidents of a criminal or terrorist nature.

Nuclear weapons are weapons of mass destruction that use radioactive substances to produce a powerful explosion. In the event of such a blast, nuclear weapons can release not only radioactive substances and radiation but also a huge amount of energy as a result of nuclear fission or fusion processes. This energy is released in the form of an explosive effect consisting of a flash of light and a subsequent wave of pressure and heat, as well as a nuclear electromagnetic pulse that can disrupt or destroy electronic devices.

The distance at which a nuclear blast can have an effect depends above all on

  • the blast yield of the nuclear weapon (TNT equivalent)
  • the altitude of the explosion (on the ground or in the air).

The quantity and type of radioactive substances released in the blast can vary widely. In general, these substances are released very quickly and over a relatively short period of time (explosively). How far they can be dispersed in the environment following the blast also depends on current weather conditions (wind and precipitation).

As well as the consequences of the explosion itself, the radiological consequences for humans and the environment can also be devastating. In August 1945, nuclear weapons were used in Hiroshima and Nagasaki for the first and – so far – only time in a military conflict.

State of 2023.10.12

How do you rate this article?

Site information and functions

© Bundesamt für Strahlenschutz