Navigation und Service

Kerntechnik

Kerntechnische Anlagen - Meldepflichtige Ereignisse - Stilllegung - Nukleare Unfälle

Kerntechnik

Druckwasserreaktoren

Druckwasserreaktoren (DWR) gehören wie die Siedewasserreaktoren zu den Leichtwasserreaktoren.

Schematische Darstellung eines Druckwasserreaktors (DWR) DruckwasserreaktorSchematische Darstellung eines Druckwasserreaktors (DWR) Quelle: Informationskreis KernEnergie

In Druckwasserreaktoren steht der Reaktordruckbehälter unter einem Druck von zirka 160 bar. Dieser hohe Druck verhindert das Sieden des Wassers im Hauptkühlmittelkreislauf (auch Primärkreislauf genannt) trotz der dort herrschenden Temperatur von etwa 320 Grad Celsius (°C).

Der für die Stromerzeugung benötigte Dampf wird in einem weiteren Kreislauf - dem Sekundärkreislauf - mit Dampferzeugern produziert und dann auf die Dampfturbine weitergeleitet.

Primärkreislauf - Hauptkühlmittelkreislauf des DWR

Hauptkühlmittelpumpen pumpen das Wasser des Primärkreislaufes in den Reaktordruckbehälter, wo es von unten nach oben durch den Reaktorkern strömt. Das erwärmte Wasser verlässt den Reaktordruckbehälter und strömt in einem Kreislauf durch die Heizrohre der Dampferzeuger zurück zu den Hauptkühlmittelpumpen.

Sekundärkreislauf des DWR

Info: Leichtwasserreaktoren

Die verschiedenen Reaktortypen unterscheiden sich durch das verwendete Kühlmittel (Wasser, Gas oder flüssiges Metall) und den eingesetzten Moderator (ein Stoff, der schnelle Neutronen abbremst und dadurch die Kettenreaktion der Kernspaltung erst ermöglicht und aufrechterhält - thermische Spaltung). Als Moderator kann Wasser oder auch Kohlenstoff in Form von Graphit verwendet werden.

Leichtwasserreaktoren

In Deutschland werden heute Leichtwasserreaktoren eingesetzt, zu denen weltweit die meisten Reaktoren gehören. Zu den Leichtwasserreaktoren gehören Druckwasserreaktoren und Siedewasserreaktoren. In Leichtwasserreaktoren wird normales Wasser (leichtes Wasser) zur Kühlung eingesetzt. Gleichzeitig dient das Wasser als Moderator.

Ein Molekül Wasser (H2O) besteht aus zwei Wasserstoffatomen und einem Sauerstoffatom. Besitzen beide Wasserstoffatome (H) im Kern nur ein Proton (positiv geladener Baustein), aber kein Neutron (ungeladener Baustein des Atomkerns), bezeichnet man die Verbindung mit Sauerstoff als "leichtes Wasser".

Bei "schwerem Wasser" hingegen besitzen beide Wasserstoffatome im Kern ein Proton und ein Neutron. Diese Wasserstoffatome bezeichnet man auch als Deuterium - ein Isotop von Wasserstoff.

Die Anzahl der Protonen und Neutronen im Kern bestimmen die Massenzahl eines Atomkerns. Die Wasserstoffatome von schwerem Wasser haben eine größere Masse (u≈2) als die Wasserstoffatome in leichtem Wasser (u≈1).

Das Wasser im Sekundärkreislauf nimmt die Wärme des Primärkreislaufes über die Dampferzeuger auf und erwärmt sich dadurch auf etwa 280°C. Da im Sekundärkreislauf ein niedriger Druck herrscht (etwa 60 bar), siedet das Wasser. Der entstehende Dampf des Sekundärkreislaufes treibt die Dampfturbine an, die mit einem Generator verbunden ist.

Dritter Kreislauf des DWR

Der Wasserdampf des Sekundärkreislaufes gibt seine Energie an die Turbine ab und kondensiert in einem Kondensator wieder zu Wasser, das in die Dampferzeuger zurückgespeist wird. Die freigewordenen Wärme im Kondensator wird über einen dritten Kreislauf, dem Hauptkühlwassersystem, an den Fluss oder den Kühlturm abgegeben.

Radioaktive Stoffe nur im Primärkreislauf

Der Reaktordruckbehälter und alle anderen Bestandteile des Primärkreislaufs befinden sich im Reaktorsicherheitsbehälter (Containment). Die Trennung von Hauptkühlmittel- und Sekundärkreislauf im DWR mittels Dampferzeuger verhindert, dass radioaktive Stoffe den Primärkreislauf verlassen können.

Das Maschinenhaus mit dem Sekundärkreislauf, der Turbine und dem Generator enthält keine radioaktiven Stoffe. Bei einem Störfall greifen Sicherheitseinrichtungen, um einen sofortigen Gebäudeabschluss des Reaktorsicherheitsbehälters zu erreichen.

Steuerung der Kernspaltung im DWR

Die Anzahl der Kernspaltungen kann durch neutronenabsorbierendes Material begrenzt werden. Die Steuerstäbe des Reaktors, die neutronenabsorbierendes Material enthalten, werden elektromotorisch (Normalantrieb) von oben in den Reaktorkern eingefahren und regeln über die Eindringtiefe den Reaktor. Bei einer Schnellabschaltung fallen die Steuerstäbe durch die Schwerkraft in den Reaktorkern ein und beenden die Kettenreaktion.

Neben den Steuerstäben wird zur Regulierung der Reaktivität im Reaktorkern eines Druckwasserreaktor dem Primärkreislauf Borsäure zugesetzt. Bor absorbiert Neutronen, so dass sich durch Veränderung der Borsäurekonzentration der Reaktor regeln lässt.

Weitere Informationen

Stand: 14.02.2017

Übergang der Fachaufgaben von BfS auf das BfE

Am 30.07.2016 ist das "Gesetz zur Neuordnung der Organisationsstruktur im Bereich der Endlagerung" in Kraft getreten. Es sieht vor, die staatlichen Aufgaben der Aufsicht und Genehmigung im Bereich der Kerntechnik, der Zwischenlagerung, der Standortauswahl und der Endlagerüberwachung mehrheitlich in einer neuen Behörde zu bündeln, dem Bundesamt für kerntechnische Entsorgungssicherheit (BfE).

Mit Inkrafttreten des Gesetzes wurden die entsprechenden Fachaufgaben des BfS auf das BfE übertragen. Damit das BfE sofort arbeitsfähig ist, unterstützt das BfS das BfE für eine Übergangszeit.

Die Internetseiten werden derzeit gemeinsam von BfS und BfE überarbeitet. In dieser Zeit finden Sie alle Informationen zu den Themen Kerntechnische Sicherheit, Nukleare Entsorgung und Endlagerüberwachung weiterhin auf den Internetseiten des BfS.

© Bundesamt für Strahlenschutz